Credits: 3 (3-0-0)
Description
Review of Newtonian dynamics; Degrees of freedom; Generalized coordinates and constraints; Holonomic and nonholonomic systems; Principle of Virtual work; D’Alembert’s principle; Euler-Lagrange equations of motion; Hamilton’s principle; Rotating coordinate systems; Euler angles; Coordinate transformation; Kinematics of a rigid body; Euler’s equations of rotation; Computer-oriented dynamic modeling; Orthogonal-complement based formulation of dynamic equations; Geometric theory; Stability; Lyapunov’s direct method; Introduction to flexible-body dynamics.